Saturated and cis/trans unsaturated acyl CoA esters differentially regulate wild-type and polymorphic beta-cell ATP-sensitive K+ channels.

نویسندگان

  • Michael J Riedel
  • Peter E Light
چکیده

Metabolic regulation of pancreatic beta-cell ATP-sensitive K+ channel (K(ATP) channel) function plays a key role in the process of glucose-stimulated insulin secretion (GSIS). Modulation of K(ATP) channel activity by long-chain acyl CoAs represents an important endogenous regulatory mechanism. Elevated acyl CoA levels have been reported in obese and type 2 diabetic individuals and may contribute to reduced beta-cell excitability and impaired GSIS. Recent studies suggest that the composition of dietary fat may influence the effects of high-fat feeding on impaired GSIS. Therefore, we examined the effects of side-chain length and the degree of saturation of various acyl CoAs on K(ATP) channel activity. Macroscopic currents from either wild-type or polymorphic (Kir6.2[E23K/I337V]) recombinant beta-cell K(ATP) channels were measured in inside-out patches by exposing the inner surface of the membrane to acyl CoAs at physiological nanomolar concentrations. Acyl CoAs increased both wild-type and polymorphic K(ATP) channel activity with the following rank order of efficacy: C18:0, C18:1trans approximately C18:1cis, C20:4 = C16:0, C16:1, and C18:2. A significant correlation exists between activation and acyl CoA hydrophobicity, suggesting that both side-chain length and degree of saturation are critical determinants of K(ATP) channel activation. Our observations reveal a plausible mechanism behind the disparate effects of acyl CoA saturation on K(ATP) channel activation and suggest that dietary fat composition may determine the severity of impaired GSIS via differential activation of beta-cell K(ATP) channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway.

The metabolic fluxes of cis-5-enoyl-CoAs through the beta-oxidation cycle were studied in solubilized rat liver mitochondrial samples and compared with saturated acyl-CoAs of equal chain length. These studies were accomplished using either spectrophotometric assay of enzyme activities and/or the analysis of metabolites and precursors using a gas chromatographic method after conversion of CoA es...

متن کامل

Structure and polymorphism of 18-carbon fatty acyl triacylglycerols: effect of unsaturation and substitution in the 2-position.

The polymorphic behavior of symmetric diacid triacylglycerols (TGs), 1,3-dioleoyl-2-stearoyl (OSO), 2-elaidoyl (OEO), and 2-vaccinoyl (OVO) glycerols were studied by differential scanning colorimetry (DSC) and X-ray diffraction and compared with the corresponding monoacid TGs triolein (OOO), tristearin (SSS), trielaidin (EEE), and trivaccinin (VVV). The monoacid TGs formed a bilayered structure...

متن کامل

Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel.

The ATP-dependent potassium (KATP) channel in the pancreatic beta-cell is a complex of two proteins, the pore-forming Kir6.2 and the sulfonylurea receptor type 1 (SUR1). Both subunits are required for functional KATP channels because expression of Kir6.2 alone does not result in measurable currents. However, truncation of the last 26 or 36 amino acids of the C terminus of Kir6.2 enables functio...

متن کامل

Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart.

ATP-sensitive K (K(ATP)) channels are inhibited by cytosolic ATP, a defining property that implicitly links these channels to cellular metabolism. Here we report a direct link between fatty acid metabolism and K(ATP) channels in cardiac muscle cells. Long-chain (LC) acyl-coenzyme A (CoA) esters are synthesized from fatty acids and serve as the principal metabolic substrates of the heart. We hav...

متن کامل

Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids.

Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently avai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 54 7  شماره 

صفحات  -

تاریخ انتشار 2005